Properties

Label 352.215
Modulus 352352
Conductor 176176
Order 2020
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(352, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([10,15,18]))
 
Copy content pari:[g,chi] = znchar(Mod(215,352))
 

Basic properties

Modulus: 352352
Conductor: 176176
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 2020
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ176(83,)\chi_{176}(83,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 352.bb

χ352(7,)\chi_{352}(7,\cdot) χ352(39,)\chi_{352}(39,\cdot) χ352(151,)\chi_{352}(151,\cdot) χ352(167,)\chi_{352}(167,\cdot) χ352(183,)\chi_{352}(183,\cdot) χ352(215,)\chi_{352}(215,\cdot) χ352(327,)\chi_{352}(327,\cdot) χ352(343,)\chi_{352}(343,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: 20.20.200317132330035063121671003054276608.1

Values on generators

(287,133,321)(287,133,321)(1,i,e(910))(-1,-i,e\left(\frac{9}{10}\right))

First values

aa 1-11133557799131315151717191921212323
χ352(215,a) \chi_{ 352 }(215, a) 1111e(1920)e\left(\frac{19}{20}\right)e(720)e\left(\frac{7}{20}\right)e(310)e\left(\frac{3}{10}\right)e(910)e\left(\frac{9}{10}\right)e(320)e\left(\frac{3}{20}\right)e(310)e\left(\frac{3}{10}\right)e(110)e\left(\frac{1}{10}\right)e(920)e\left(\frac{9}{20}\right)ii11
Copy content sage:chi.jacobi_sum(n)
 
χ352(215,a)   \chi_{ 352 }(215,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ352(215,))   \tau_{ a }( \chi_{ 352 }(215,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ352(215,),χ352(n,))   J(\chi_{ 352 }(215,·),\chi_{ 352 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ352(215,))  K(a,b,\chi_{ 352 }(215,·)) \; at   a,b=\; a,b = e.g. 1,2