sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(352, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([10,15,18]))
pari:[g,chi] = znchar(Mod(215,352))
χ352(7,⋅)
χ352(39,⋅)
χ352(151,⋅)
χ352(167,⋅)
χ352(183,⋅)
χ352(215,⋅)
χ352(327,⋅)
χ352(343,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(287,133,321) → (−1,−i,e(109))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 13 | 15 | 17 | 19 | 21 | 23 |
χ352(215,a) |
1 | 1 | e(2019) | e(207) | e(103) | e(109) | e(203) | e(103) | e(101) | e(209) | i | 1 |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)