Properties

Label 352.225
Modulus 352352
Conductor 1111
Order 55
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,4]))
 
pari: [g,chi] = znchar(Mod(225,352))
 

Basic properties

Modulus: 352352
Conductor: 1111
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 55
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ11(5,)\chi_{11}(5,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 352.m

χ352(97,)\chi_{352}(97,\cdot) χ352(225,)\chi_{352}(225,\cdot) χ352(257,)\chi_{352}(257,\cdot) χ352(289,)\chi_{352}(289,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: Q(ζ11)+\Q(\zeta_{11})^+

Values on generators

(287,133,321)(287,133,321)(1,1,e(25))(1,1,e\left(\frac{2}{5}\right))

First values

aa 1-11133557799131315151717191921212323
χ352(225,a) \chi_{ 352 }(225, a) 1111e(15)e\left(\frac{1}{5}\right)e(35)e\left(\frac{3}{5}\right)e(45)e\left(\frac{4}{5}\right)e(25)e\left(\frac{2}{5}\right)e(25)e\left(\frac{2}{5}\right)e(45)e\left(\frac{4}{5}\right)e(35)e\left(\frac{3}{5}\right)e(15)e\left(\frac{1}{5}\right)1111
sage: chi.jacobi_sum(n)
 
χ352(225,a)   \chi_{ 352 }(225,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ352(225,))   \tau_{ a }( \chi_{ 352 }(225,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ352(225,),χ352(n,))   J(\chi_{ 352 }(225,·),\chi_{ 352 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ352(225,))  K(a,b,\chi_{ 352 }(225,·)) \; at   a,b=\; a,b = e.g. 1,2