Properties

Label 352.239
Modulus 352352
Conductor 8888
Order 1010
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,5,3]))
 
pari: [g,chi] = znchar(Mod(239,352))
 

Basic properties

Modulus: 352352
Conductor: 8888
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ88(19,)\chi_{88}(19,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 352.s

χ352(79,)\chi_{352}(79,\cdot) χ352(239,)\chi_{352}(239,\cdot) χ352(271,)\chi_{352}(271,\cdot) χ352(303,)\chi_{352}(303,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: 10.10.77265229938688.1

Values on generators

(287,133,321)(287,133,321)(1,1,e(310))(-1,-1,e\left(\frac{3}{10}\right))

First values

aa 1-11133557799131315151717191921212323
χ352(239,a) \chi_{ 352 }(239, a) 1111e(25)e\left(\frac{2}{5}\right)e(710)e\left(\frac{7}{10}\right)e(35)e\left(\frac{3}{5}\right)e(45)e\left(\frac{4}{5}\right)e(45)e\left(\frac{4}{5}\right)e(110)e\left(\frac{1}{10}\right)e(710)e\left(\frac{7}{10}\right)e(910)e\left(\frac{9}{10}\right)111-1
sage: chi.jacobi_sum(n)
 
χ352(239,a)   \chi_{ 352 }(239,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ352(239,))   \tau_{ a }( \chi_{ 352 }(239,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ352(239,),χ352(n,))   J(\chi_{ 352 }(239,·),\chi_{ 352 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ352(239,))  K(a,b,\chi_{ 352 }(239,·)) \; at   a,b=\; a,b = e.g. 1,2