sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(352, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([0,5,16]))
pari:[g,chi] = znchar(Mod(5,352))
Modulus: | 352 | |
Conductor: | 352 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 40 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ352(5,⋅)
χ352(37,⋅)
χ352(53,⋅)
χ352(69,⋅)
χ352(93,⋅)
χ352(125,⋅)
χ352(141,⋅)
χ352(157,⋅)
χ352(181,⋅)
χ352(213,⋅)
χ352(229,⋅)
χ352(245,⋅)
χ352(269,⋅)
χ352(301,⋅)
χ352(317,⋅)
χ352(333,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(287,133,321) → (1,e(81),e(52))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 13 | 15 | 17 | 19 | 21 | 23 |
χ352(5,a) |
1 | 1 | e(4023) | e(4029) | e(201) | e(203) | e(4011) | e(103) | e(101) | e(403) | e(85) | −i |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)