Properties

Label 3520.1563
Modulus $3520$
Conductor $320$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3520, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,9,12,0]))
 
pari: [g,chi] = znchar(Mod(1563,3520))
 

Basic properties

Modulus: \(3520\)
Conductor: \(320\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{320}(283,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3520.cx

\(\chi_{3520}(67,\cdot)\) \(\chi_{3520}(683,\cdot)\) \(\chi_{3520}(947,\cdot)\) \(\chi_{3520}(1563,\cdot)\) \(\chi_{3520}(1827,\cdot)\) \(\chi_{3520}(2443,\cdot)\) \(\chi_{3520}(2707,\cdot)\) \(\chi_{3520}(3323,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.147573952589676412928000000000000.1

Values on generators

\((2751,1541,2817,321)\) → \((-1,e\left(\frac{9}{16}\right),-i,1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 3520 }(1563, a) \) \(1\)\(1\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{11}{16}\right)\)\(-1\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{11}{16}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3520 }(1563,a) \;\) at \(\;a = \) e.g. 2