Properties

Label 3520.51
Modulus $3520$
Conductor $704$
Order $80$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3520, base_ring=CyclotomicField(80))
 
M = H._module
 
chi = DirichletCharacter(H, M([40,75,0,56]))
 
pari: [g,chi] = znchar(Mod(51,3520))
 

Basic properties

Modulus: \(3520\)
Conductor: \(704\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(80\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{704}(51,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3520.fd

\(\chi_{3520}(51,\cdot)\) \(\chi_{3520}(171,\cdot)\) \(\chi_{3520}(211,\cdot)\) \(\chi_{3520}(371,\cdot)\) \(\chi_{3520}(491,\cdot)\) \(\chi_{3520}(611,\cdot)\) \(\chi_{3520}(651,\cdot)\) \(\chi_{3520}(811,\cdot)\) \(\chi_{3520}(931,\cdot)\) \(\chi_{3520}(1051,\cdot)\) \(\chi_{3520}(1091,\cdot)\) \(\chi_{3520}(1251,\cdot)\) \(\chi_{3520}(1371,\cdot)\) \(\chi_{3520}(1491,\cdot)\) \(\chi_{3520}(1531,\cdot)\) \(\chi_{3520}(1691,\cdot)\) \(\chi_{3520}(1811,\cdot)\) \(\chi_{3520}(1931,\cdot)\) \(\chi_{3520}(1971,\cdot)\) \(\chi_{3520}(2131,\cdot)\) \(\chi_{3520}(2251,\cdot)\) \(\chi_{3520}(2371,\cdot)\) \(\chi_{3520}(2411,\cdot)\) \(\chi_{3520}(2571,\cdot)\) \(\chi_{3520}(2691,\cdot)\) \(\chi_{3520}(2811,\cdot)\) \(\chi_{3520}(2851,\cdot)\) \(\chi_{3520}(3011,\cdot)\) \(\chi_{3520}(3131,\cdot)\) \(\chi_{3520}(3251,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((2751,1541,2817,321)\) → \((-1,e\left(\frac{15}{16}\right),1,e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 3520 }(51, a) \) \(1\)\(1\)\(e\left(\frac{73}{80}\right)\)\(e\left(\frac{31}{40}\right)\)\(e\left(\frac{33}{40}\right)\)\(e\left(\frac{61}{80}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{13}{80}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{59}{80}\right)\)\(e\left(\frac{17}{80}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3520 }(51,a) \;\) at \(\;a = \) e.g. 2