from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3520, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([0,15,30,28]))
pari: [g,chi] = znchar(Mod(73,3520))
Basic properties
Modulus: | \(3520\) | |
Conductor: | \(1760\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(40\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1760}(733,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3520.ei
\(\chi_{3520}(57,\cdot)\) \(\chi_{3520}(73,\cdot)\) \(\chi_{3520}(217,\cdot)\) \(\chi_{3520}(233,\cdot)\) \(\chi_{3520}(393,\cdot)\) \(\chi_{3520}(1337,\cdot)\) \(\chi_{3520}(1513,\cdot)\) \(\chi_{3520}(1657,\cdot)\) \(\chi_{3520}(1817,\cdot)\) \(\chi_{3520}(1833,\cdot)\) \(\chi_{3520}(1977,\cdot)\) \(\chi_{3520}(1993,\cdot)\) \(\chi_{3520}(2153,\cdot)\) \(\chi_{3520}(3097,\cdot)\) \(\chi_{3520}(3273,\cdot)\) \(\chi_{3520}(3417,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{40})\) |
Fixed field: | 40.40.1314880012449506220994309247746612403564809108378301093397843089030698237952000000000000000000000000000000.2 |
Values on generators
\((2751,1541,2817,321)\) → \((1,e\left(\frac{3}{8}\right),-i,e\left(\frac{7}{10}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 3520 }(73, a) \) | \(1\) | \(1\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{23}{40}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(-1\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{21}{40}\right)\) |
sage: chi.jacobi_sum(n)