Properties

Label 3520.73
Modulus $3520$
Conductor $1760$
Order $40$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3520, base_ring=CyclotomicField(40))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,15,30,28]))
 
pari: [g,chi] = znchar(Mod(73,3520))
 

Basic properties

Modulus: \(3520\)
Conductor: \(1760\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(40\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1760}(733,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3520.ei

\(\chi_{3520}(57,\cdot)\) \(\chi_{3520}(73,\cdot)\) \(\chi_{3520}(217,\cdot)\) \(\chi_{3520}(233,\cdot)\) \(\chi_{3520}(393,\cdot)\) \(\chi_{3520}(1337,\cdot)\) \(\chi_{3520}(1513,\cdot)\) \(\chi_{3520}(1657,\cdot)\) \(\chi_{3520}(1817,\cdot)\) \(\chi_{3520}(1833,\cdot)\) \(\chi_{3520}(1977,\cdot)\) \(\chi_{3520}(1993,\cdot)\) \(\chi_{3520}(2153,\cdot)\) \(\chi_{3520}(3097,\cdot)\) \(\chi_{3520}(3273,\cdot)\) \(\chi_{3520}(3417,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{40})\)
Fixed field: 40.40.1314880012449506220994309247746612403564809108378301093397843089030698237952000000000000000000000000000000.2

Values on generators

\((2751,1541,2817,321)\) → \((1,e\left(\frac{3}{8}\right),-i,e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 3520 }(73, a) \) \(1\)\(1\)\(e\left(\frac{39}{40}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{23}{40}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{9}{40}\right)\)\(e\left(\frac{3}{8}\right)\)\(-1\)\(e\left(\frac{37}{40}\right)\)\(e\left(\frac{21}{40}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3520 }(73,a) \;\) at \(\;a = \) e.g. 2