from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3528, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,21,0,41]))
pari: [g,chi] = znchar(Mod(1405,3528))
Basic properties
Modulus: | ||
Conductor: | sage: chi.conductor()
pari: znconreyconductor(g,chi)
| |
Order: | sage: chi.multiplicative_order()
pari: charorder(g,chi)
| |
Real: | no | |
Primitive: | no, induced from | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3528.fb
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | |
Fixed field: | 42.0.1090030896264192289800449659845679818091197961133776603876122561317234873686091104256.1 |
Values on generators
→
First values
sage: chi.jacobi_sum(n)