Properties

Label 3528.1405
Modulus $3528$
Conductor $392$
Order $42$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,21,0,41]))
 
pari: [g,chi] = znchar(Mod(1405,3528))
 

Basic properties

Modulus: \(3528\)
Conductor: \(392\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{392}(229,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3528.fb

\(\chi_{3528}(397,\cdot)\) \(\chi_{3528}(829,\cdot)\) \(\chi_{3528}(1333,\cdot)\) \(\chi_{3528}(1405,\cdot)\) \(\chi_{3528}(1837,\cdot)\) \(\chi_{3528}(1909,\cdot)\) \(\chi_{3528}(2341,\cdot)\) \(\chi_{3528}(2413,\cdot)\) \(\chi_{3528}(2845,\cdot)\) \(\chi_{3528}(2917,\cdot)\) \(\chi_{3528}(3349,\cdot)\) \(\chi_{3528}(3421,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 42.0.1090030896264192289800449659845679818091197961133776603876122561317234873686091104256.1

Values on generators

\((2647,1765,785,1081)\) → \((1,-1,1,e\left(\frac{41}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\( \chi_{ 3528 }(1405, a) \) \(-1\)\(1\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{23}{42}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{17}{42}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{21}\right)\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{31}{42}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3528 }(1405,a) \;\) at \(\;a = \) e.g. 2