Properties

Label 3528.2125
Modulus 35283528
Conductor 5656
Order 66
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,0,4]))
 
pari: [g,chi] = znchar(Mod(2125,3528))
 

Basic properties

Modulus: 35283528
Conductor: 5656
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ56(53,)\chi_{56}(53,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3528.cj

χ3528(1549,)\chi_{3528}(1549,\cdot) χ3528(2125,)\chi_{3528}(2125,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.6.1229312.1

Values on generators

(2647,1765,785,1081)(2647,1765,785,1081)(1,1,1,e(23))(1,-1,1,e\left(\frac{2}{3}\right))

First values

aa 1-11155111113131717191923232525292931313737
χ3528(2125,a) \chi_{ 3528 }(2125, a) 1111e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)1-1e(23)e\left(\frac{2}{3}\right)e(56)e\left(\frac{5}{6}\right)e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)1-1e(23)e\left(\frac{2}{3}\right)e(56)e\left(\frac{5}{6}\right)
sage: chi.jacobi_sum(n)
 
χ3528(2125,a)   \chi_{ 3528 }(2125,a) \; at   a=\;a = e.g. 2