Properties

Label 3528.43
Modulus $3528$
Conductor $3528$
Order $42$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,21,28,6]))
 
pari: [g,chi] = znchar(Mod(43,3528))
 

Basic properties

Modulus: \(3528\)
Conductor: \(3528\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3528.er

\(\chi_{3528}(43,\cdot)\) \(\chi_{3528}(211,\cdot)\) \(\chi_{3528}(547,\cdot)\) \(\chi_{3528}(715,\cdot)\) \(\chi_{3528}(1051,\cdot)\) \(\chi_{3528}(1219,\cdot)\) \(\chi_{3528}(1555,\cdot)\) \(\chi_{3528}(1723,\cdot)\) \(\chi_{3528}(2227,\cdot)\) \(\chi_{3528}(2563,\cdot)\) \(\chi_{3528}(2731,\cdot)\) \(\chi_{3528}(3067,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((2647,1765,785,1081)\) → \((-1,-1,e\left(\frac{2}{3}\right),e\left(\frac{1}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\( \chi_{ 3528 }(43, a) \) \(-1\)\(1\)\(e\left(\frac{41}{42}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{23}{42}\right)\)\(e\left(\frac{4}{7}\right)\)\(1\)\(e\left(\frac{11}{42}\right)\)\(e\left(\frac{20}{21}\right)\)\(e\left(\frac{31}{42}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{14}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3528 }(43,a) \;\) at \(\;a = \) e.g. 2