Properties

Label 3528.43
Modulus 35283528
Conductor 35283528
Order 4242
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,21,28,6]))
 
pari: [g,chi] = znchar(Mod(43,3528))
 

Basic properties

Modulus: 35283528
Conductor: 35283528
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4242
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3528.er

χ3528(43,)\chi_{3528}(43,\cdot) χ3528(211,)\chi_{3528}(211,\cdot) χ3528(547,)\chi_{3528}(547,\cdot) χ3528(715,)\chi_{3528}(715,\cdot) χ3528(1051,)\chi_{3528}(1051,\cdot) χ3528(1219,)\chi_{3528}(1219,\cdot) χ3528(1555,)\chi_{3528}(1555,\cdot) χ3528(1723,)\chi_{3528}(1723,\cdot) χ3528(2227,)\chi_{3528}(2227,\cdot) χ3528(2563,)\chi_{3528}(2563,\cdot) χ3528(2731,)\chi_{3528}(2731,\cdot) χ3528(3067,)\chi_{3528}(3067,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ21)\Q(\zeta_{21})
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

(2647,1765,785,1081)(2647,1765,785,1081)(1,1,e(23),e(17))(-1,-1,e\left(\frac{2}{3}\right),e\left(\frac{1}{7}\right))

First values

aa 1-11155111113131717191923232525292931313737
χ3528(43,a) \chi_{ 3528 }(43, a) 1-111e(4142)e\left(\frac{41}{42}\right)e(821)e\left(\frac{8}{21}\right)e(2342)e\left(\frac{23}{42}\right)e(47)e\left(\frac{4}{7}\right)11e(1142)e\left(\frac{11}{42}\right)e(2021)e\left(\frac{20}{21}\right)e(3142)e\left(\frac{31}{42}\right)e(56)e\left(\frac{5}{6}\right)e(114)e\left(\frac{1}{14}\right)
sage: chi.jacobi_sum(n)
 
χ3528(43,a)   \chi_{ 3528 }(43,a) \; at   a=\;a = e.g. 2