Properties

Label 3528.461
Modulus $3528$
Conductor $3528$
Order $42$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,21,7,39]))
 
pari: [g,chi] = znchar(Mod(461,3528))
 

Basic properties

Modulus: \(3528\)
Conductor: \(3528\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3528.ev

\(\chi_{3528}(461,\cdot)\) \(\chi_{3528}(797,\cdot)\) \(\chi_{3528}(965,\cdot)\) \(\chi_{3528}(1301,\cdot)\) \(\chi_{3528}(1805,\cdot)\) \(\chi_{3528}(1973,\cdot)\) \(\chi_{3528}(2309,\cdot)\) \(\chi_{3528}(2477,\cdot)\) \(\chi_{3528}(2813,\cdot)\) \(\chi_{3528}(2981,\cdot)\) \(\chi_{3528}(3317,\cdot)\) \(\chi_{3528}(3485,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 42.42.25461370422593899025010993639968319493979540256968222705473361226986223705326760477191735540542813852487110361088.1

Values on generators

\((2647,1765,785,1081)\) → \((1,-1,e\left(\frac{1}{6}\right),e\left(\frac{13}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\( \chi_{ 3528 }(461, a) \) \(1\)\(1\)\(e\left(\frac{11}{42}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{10}{21}\right)\)\(e\left(\frac{5}{7}\right)\)\(1\)\(e\left(\frac{5}{42}\right)\)\(e\left(\frac{11}{21}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{3}{14}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3528 }(461,a) \;\) at \(\;a = \) e.g. 2