Properties

Label 3549.1691
Modulus 35493549
Conductor 2121
Order 66
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3549, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([3,4,0]))
 
pari: [g,chi] = znchar(Mod(1691,3549))
 

Basic properties

Modulus: 35493549
Conductor: 2121
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ21(11,)\chi_{21}(11,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3549.bk

χ3549(170,)\chi_{3549}(170,\cdot) χ3549(1691,)\chi_{3549}(1691,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.0.64827.1

Values on generators

(1184,1522,3382)(1184,1522,3382)(1,e(23),1)(-1,e\left(\frac{2}{3}\right),1)

First values

aa 1-11122445588101011111616171719192020
χ3549(1691,a) \chi_{ 3549 }(1691, a) 1-111e(56)e\left(\frac{5}{6}\right)e(23)e\left(\frac{2}{3}\right)e(56)e\left(\frac{5}{6}\right)1-1e(23)e\left(\frac{2}{3}\right)e(16)e\left(\frac{1}{6}\right)e(13)e\left(\frac{1}{3}\right)e(16)e\left(\frac{1}{6}\right)e(13)e\left(\frac{1}{3}\right)1-1
sage: chi.jacobi_sum(n)
 
χ3549(1691,a)   \chi_{ 3549 }(1691,a) \; at   a=\;a = e.g. 2