sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(357, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([24,16,45]))
pari:[g,chi] = znchar(Mod(23,357))
Modulus: | 357 | |
Conductor: | 357 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 48 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ357(11,⋅)
χ357(23,⋅)
χ357(44,⋅)
χ357(65,⋅)
χ357(74,⋅)
χ357(95,⋅)
χ357(107,⋅)
χ357(116,⋅)
χ357(158,⋅)
χ357(233,⋅)
χ357(275,⋅)
χ357(284,⋅)
χ357(296,⋅)
χ357(317,⋅)
χ357(326,⋅)
χ357(347,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(239,52,190) → (−1,e(31),e(1615))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 19 | 20 |
χ357(23,a) |
1 | 1 | e(247) | e(127) | e(4841) | e(87) | e(487) | e(4819) | −i | e(61) | e(2419) | e(167) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)