Properties

Label 357.23
Modulus $357$
Conductor $357$
Order $48$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(357, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([24,16,45]))
 
pari: [g,chi] = znchar(Mod(23,357))
 

Basic properties

Modulus: \(357\)
Conductor: \(357\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 357.bm

\(\chi_{357}(11,\cdot)\) \(\chi_{357}(23,\cdot)\) \(\chi_{357}(44,\cdot)\) \(\chi_{357}(65,\cdot)\) \(\chi_{357}(74,\cdot)\) \(\chi_{357}(95,\cdot)\) \(\chi_{357}(107,\cdot)\) \(\chi_{357}(116,\cdot)\) \(\chi_{357}(158,\cdot)\) \(\chi_{357}(233,\cdot)\) \(\chi_{357}(275,\cdot)\) \(\chi_{357}(284,\cdot)\) \(\chi_{357}(296,\cdot)\) \(\chi_{357}(317,\cdot)\) \(\chi_{357}(326,\cdot)\) \(\chi_{357}(347,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((239,52,190)\) → \((-1,e\left(\frac{1}{3}\right),e\left(\frac{15}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(19\)\(20\)
\( \chi_{ 357 }(23, a) \) \(1\)\(1\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{41}{48}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{7}{48}\right)\)\(e\left(\frac{19}{48}\right)\)\(-i\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{7}{16}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 357 }(23,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 357 }(23,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 357 }(23,·),\chi_{ 357 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 357 }(23,·)) \;\) at \(\; a,b = \) e.g. 1,2