Properties

Label 3600.1519
Modulus $3600$
Conductor $900$
Order $30$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3600, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,0,20,27]))
 
pari: [g,chi] = znchar(Mod(1519,3600))
 

Basic properties

Modulus: \(3600\)
Conductor: \(900\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{900}(619,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3600.es

\(\chi_{3600}(79,\cdot)\) \(\chi_{3600}(319,\cdot)\) \(\chi_{3600}(1039,\cdot)\) \(\chi_{3600}(1519,\cdot)\) \(\chi_{3600}(1759,\cdot)\) \(\chi_{3600}(2239,\cdot)\) \(\chi_{3600}(2479,\cdot)\) \(\chi_{3600}(2959,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((3151,901,2801,577)\) → \((-1,1,e\left(\frac{2}{3}\right),e\left(\frac{9}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 3600 }(1519, a) \) \(-1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{14}{15}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3600 }(1519,a) \;\) at \(\;a = \) e.g. 2