sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3600, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([0,15,10,57]))
pari:[g,chi] = znchar(Mod(3413,3600))
Modulus: | 3600 | |
Conductor: | 3600 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 60 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ3600(77,⋅)
χ3600(317,⋅)
χ3600(533,⋅)
χ3600(797,⋅)
χ3600(1013,⋅)
χ3600(1037,⋅)
χ3600(1253,⋅)
χ3600(1517,⋅)
χ3600(1733,⋅)
χ3600(1973,⋅)
χ3600(2237,⋅)
χ3600(2453,⋅)
χ3600(2477,⋅)
χ3600(3173,⋅)
χ3600(3197,⋅)
χ3600(3413,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3151,901,2801,577) → (1,i,e(61),e(2019))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ3600(3413,a) |
1 | 1 | e(1211) | e(6037) | e(152) | e(2017) | e(2017) | e(6047) | e(6049) | e(1514) | e(54) | e(152) |
sage:chi.jacobi_sum(n)