Properties

Label 36000.5189
Modulus $36000$
Conductor $36000$
Order $600$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(36000, base_ring=CyclotomicField(600))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,75,500,36]))
 
pari: [g,chi] = znchar(Mod(5189,36000))
 

Basic properties

Modulus: \(36000\)
Conductor: \(36000\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(600\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 36000.mt

\(\chi_{36000}(29,\cdot)\) \(\chi_{36000}(389,\cdot)\) \(\chi_{36000}(509,\cdot)\) \(\chi_{36000}(869,\cdot)\) \(\chi_{36000}(1109,\cdot)\) \(\chi_{36000}(1229,\cdot)\) \(\chi_{36000}(1469,\cdot)\) \(\chi_{36000}(1589,\cdot)\) \(\chi_{36000}(1829,\cdot)\) \(\chi_{36000}(2189,\cdot)\) \(\chi_{36000}(2309,\cdot)\) \(\chi_{36000}(2669,\cdot)\) \(\chi_{36000}(2909,\cdot)\) \(\chi_{36000}(3029,\cdot)\) \(\chi_{36000}(3269,\cdot)\) \(\chi_{36000}(3389,\cdot)\) \(\chi_{36000}(3629,\cdot)\) \(\chi_{36000}(3989,\cdot)\) \(\chi_{36000}(4109,\cdot)\) \(\chi_{36000}(4469,\cdot)\) \(\chi_{36000}(4709,\cdot)\) \(\chi_{36000}(4829,\cdot)\) \(\chi_{36000}(5069,\cdot)\) \(\chi_{36000}(5189,\cdot)\) \(\chi_{36000}(5429,\cdot)\) \(\chi_{36000}(5789,\cdot)\) \(\chi_{36000}(5909,\cdot)\) \(\chi_{36000}(6269,\cdot)\) \(\chi_{36000}(6509,\cdot)\) \(\chi_{36000}(6629,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{600})$
Fixed field: Number field defined by a degree 600 polynomial (not computed)

Values on generators

\((6751,22501,28001,29377)\) → \((1,e\left(\frac{1}{8}\right),e\left(\frac{5}{6}\right),e\left(\frac{3}{50}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 36000 }(5189, a) \) \(-1\)\(1\)\(e\left(\frac{41}{60}\right)\)\(e\left(\frac{11}{600}\right)\)\(e\left(\frac{529}{600}\right)\)\(e\left(\frac{19}{50}\right)\)\(e\left(\frac{191}{200}\right)\)\(e\left(\frac{233}{300}\right)\)\(e\left(\frac{557}{600}\right)\)\(e\left(\frac{41}{75}\right)\)\(e\left(\frac{173}{200}\right)\)\(e\left(\frac{167}{300}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 36000 }(5189,a) \;\) at \(\;a = \) e.g. 2