Properties

Label 361.121
Modulus 361361
Conductor 361361
Order 5757
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(361, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([68]))
 
Copy content pari:[g,chi] = znchar(Mod(121,361))
 

Basic properties

Modulus: 361361
Conductor: 361361
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 5757
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 361.i

χ361(7,)\chi_{361}(7,\cdot) χ361(11,)\chi_{361}(11,\cdot) χ361(26,)\chi_{361}(26,\cdot) χ361(30,)\chi_{361}(30,\cdot) χ361(45,)\chi_{361}(45,\cdot) χ361(49,)\chi_{361}(49,\cdot) χ361(64,)\chi_{361}(64,\cdot) χ361(83,)\chi_{361}(83,\cdot) χ361(87,)\chi_{361}(87,\cdot) χ361(102,)\chi_{361}(102,\cdot) χ361(106,)\chi_{361}(106,\cdot) χ361(121,)\chi_{361}(121,\cdot) χ361(125,)\chi_{361}(125,\cdot) χ361(140,)\chi_{361}(140,\cdot) χ361(144,)\chi_{361}(144,\cdot) χ361(159,)\chi_{361}(159,\cdot) χ361(163,)\chi_{361}(163,\cdot) χ361(178,)\chi_{361}(178,\cdot) χ361(182,)\chi_{361}(182,\cdot) χ361(197,)\chi_{361}(197,\cdot) χ361(201,)\chi_{361}(201,\cdot) χ361(216,)\chi_{361}(216,\cdot) χ361(220,)\chi_{361}(220,\cdot) χ361(235,)\chi_{361}(235,\cdot) χ361(239,)\chi_{361}(239,\cdot) χ361(254,)\chi_{361}(254,\cdot) χ361(258,)\chi_{361}(258,\cdot) χ361(273,)\chi_{361}(273,\cdot) χ361(277,)\chi_{361}(277,\cdot) χ361(296,)\chi_{361}(296,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ57)\Q(\zeta_{57})
Fixed field: Number field defined by a degree 57 polynomial

Values on generators

22e(3457)e\left(\frac{34}{57}\right)

First values

aa 1-111223344556677889910101111
χ361(121,a) \chi_{ 361 }(121, a) 1111e(3457)e\left(\frac{34}{57}\right)e(5257)e\left(\frac{52}{57}\right)e(1157)e\left(\frac{11}{57}\right)e(2257)e\left(\frac{22}{57}\right)e(2957)e\left(\frac{29}{57}\right)e(919)e\left(\frac{9}{19}\right)e(1519)e\left(\frac{15}{19}\right)e(4757)e\left(\frac{47}{57}\right)e(5657)e\left(\frac{56}{57}\right)e(1619)e\left(\frac{16}{19}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ361(121,a)   \chi_{ 361 }(121,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ361(121,))   \tau_{ a }( \chi_{ 361 }(121,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ361(121,),χ361(n,))   J(\chi_{ 361 }(121,·),\chi_{ 361 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ361(121,))  K(a,b,\chi_{ 361 }(121,·)) \; at   a,b=\; a,b = e.g. 1,2