sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(361, base_ring=CyclotomicField(114))
M = H._module
chi = DirichletCharacter(H, M([68]))
pari:[g,chi] = znchar(Mod(121,361))
Modulus: | 361 | |
Conductor: | 361 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 57 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ361(7,⋅)
χ361(11,⋅)
χ361(26,⋅)
χ361(30,⋅)
χ361(45,⋅)
χ361(49,⋅)
χ361(64,⋅)
χ361(83,⋅)
χ361(87,⋅)
χ361(102,⋅)
χ361(106,⋅)
χ361(121,⋅)
χ361(125,⋅)
χ361(140,⋅)
χ361(144,⋅)
χ361(159,⋅)
χ361(163,⋅)
χ361(178,⋅)
χ361(182,⋅)
χ361(197,⋅)
χ361(201,⋅)
χ361(216,⋅)
χ361(220,⋅)
χ361(235,⋅)
χ361(239,⋅)
χ361(254,⋅)
χ361(258,⋅)
χ361(273,⋅)
χ361(277,⋅)
χ361(296,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(5734)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ361(121,a) |
1 | 1 | e(5734) | e(5752) | e(5711) | e(5722) | e(5729) | e(199) | e(1915) | e(5747) | e(5756) | e(1916) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)