Properties

Label 361.278
Modulus $361$
Conductor $361$
Order $114$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(361, base_ring=CyclotomicField(114))
 
M = H._module
 
chi = DirichletCharacter(H, M([5]))
 
pari: [g,chi] = znchar(Mod(278,361))
 

Basic properties

Modulus: \(361\)
Conductor: \(361\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(114\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 361.j

\(\chi_{361}(8,\cdot)\) \(\chi_{361}(12,\cdot)\) \(\chi_{361}(27,\cdot)\) \(\chi_{361}(31,\cdot)\) \(\chi_{361}(46,\cdot)\) \(\chi_{361}(50,\cdot)\) \(\chi_{361}(65,\cdot)\) \(\chi_{361}(84,\cdot)\) \(\chi_{361}(88,\cdot)\) \(\chi_{361}(103,\cdot)\) \(\chi_{361}(107,\cdot)\) \(\chi_{361}(122,\cdot)\) \(\chi_{361}(126,\cdot)\) \(\chi_{361}(141,\cdot)\) \(\chi_{361}(145,\cdot)\) \(\chi_{361}(160,\cdot)\) \(\chi_{361}(164,\cdot)\) \(\chi_{361}(179,\cdot)\) \(\chi_{361}(183,\cdot)\) \(\chi_{361}(198,\cdot)\) \(\chi_{361}(202,\cdot)\) \(\chi_{361}(217,\cdot)\) \(\chi_{361}(221,\cdot)\) \(\chi_{361}(236,\cdot)\) \(\chi_{361}(240,\cdot)\) \(\chi_{361}(255,\cdot)\) \(\chi_{361}(259,\cdot)\) \(\chi_{361}(274,\cdot)\) \(\chi_{361}(278,\cdot)\) \(\chi_{361}(297,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 114 polynomial (not computed)

Values on generators

\(2\) → \(e\left(\frac{5}{114}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 361 }(278, a) \) \(-1\)\(1\)\(e\left(\frac{5}{114}\right)\)\(e\left(\frac{11}{114}\right)\)\(e\left(\frac{5}{57}\right)\)\(e\left(\frac{10}{57}\right)\)\(e\left(\frac{8}{57}\right)\)\(e\left(\frac{11}{19}\right)\)\(e\left(\frac{5}{38}\right)\)\(e\left(\frac{11}{57}\right)\)\(e\left(\frac{25}{114}\right)\)\(e\left(\frac{9}{19}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 361 }(278,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 361 }(278,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 361 }(278,·),\chi_{ 361 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 361 }(278,·)) \;\) at \(\; a,b = \) e.g. 1,2