from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(361, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([4]))
pari: [g,chi] = znchar(Mod(54,361))
Basic properties
Modulus: | \(361\) | |
Conductor: | \(19\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(9\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{19}(16,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 361.e
\(\chi_{361}(28,\cdot)\) \(\chi_{361}(54,\cdot)\) \(\chi_{361}(62,\cdot)\) \(\chi_{361}(99,\cdot)\) \(\chi_{361}(234,\cdot)\) \(\chi_{361}(245,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{9})\) |
Fixed field: | \(\Q(\zeta_{19})^+\) |
Values on generators
\(2\) → \(e\left(\frac{2}{9}\right)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 361 }(54, a) \) | \(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)