Properties

Label 3645.2834
Modulus 36453645
Conductor 135135
Order 1818
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3645, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([17,9]))
 
pari: [g,chi] = znchar(Mod(2834,3645))
 

Basic properties

Modulus: 36453645
Conductor: 135135
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ135(14,)\chi_{135}(14,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3645.n

χ3645(404,)\chi_{3645}(404,\cdot) χ3645(809,)\chi_{3645}(809,\cdot) χ3645(1619,)\chi_{3645}(1619,\cdot) χ3645(2024,)\chi_{3645}(2024,\cdot) χ3645(2834,)\chi_{3645}(2834,\cdot) χ3645(3239,)\chi_{3645}(3239,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: 18.0.5770142004982097067662109375.1

Values on generators

(731,2917)(731,2917)(e(1718),1)(e\left(\frac{17}{18}\right),-1)

First values

aa 1-11122447788111113131414161617171919
χ3645(2834,a) \chi_{ 3645 }(2834, a) 1-111e(49)e\left(\frac{4}{9}\right)e(89)e\left(\frac{8}{9}\right)e(1118)e\left(\frac{11}{18}\right)e(13)e\left(\frac{1}{3}\right)e(518)e\left(\frac{5}{18}\right)e(118)e\left(\frac{1}{18}\right)e(118)e\left(\frac{1}{18}\right)e(79)e\left(\frac{7}{9}\right)e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)
sage: chi.jacobi_sum(n)
 
χ3645(2834,a)   \chi_{ 3645 }(2834,a) \; at   a=\;a = e.g. 2