Properties

Label 366.209
Modulus $366$
Conductor $183$
Order $60$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(366, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([30,41]))
 
pari: [g,chi] = znchar(Mod(209,366))
 

Basic properties

Modulus: \(366\)
Conductor: \(183\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{183}(26,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 366.x

\(\chi_{366}(17,\cdot)\) \(\chi_{366}(35,\cdot)\) \(\chi_{366}(59,\cdot)\) \(\chi_{366}(71,\cdot)\) \(\chi_{366}(173,\cdot)\) \(\chi_{366}(185,\cdot)\) \(\chi_{366}(209,\cdot)\) \(\chi_{366}(227,\cdot)\) \(\chi_{366}(251,\cdot)\) \(\chi_{366}(275,\cdot)\) \(\chi_{366}(287,\cdot)\) \(\chi_{366}(299,\cdot)\) \(\chi_{366}(311,\cdot)\) \(\chi_{366}(323,\cdot)\) \(\chi_{366}(335,\cdot)\) \(\chi_{366}(359,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((245,307)\) → \((-1,e\left(\frac{41}{60}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 366 }(209, a) \) \(1\)\(1\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{29}{60}\right)\)\(-i\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{37}{60}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{19}{60}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 366 }(209,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 366 }(209,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 366 }(209,·),\chi_{ 366 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 366 }(209,·)) \;\) at \(\; a,b = \) e.g. 1,2