Properties

Label 368.53
Modulus $368$
Conductor $368$
Order $44$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(44))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,11,38]))
 
pari: [g,chi] = znchar(Mod(53,368))
 

Basic properties

Modulus: \(368\)
Conductor: \(368\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(44\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 368.v

\(\chi_{368}(5,\cdot)\) \(\chi_{368}(21,\cdot)\) \(\chi_{368}(37,\cdot)\) \(\chi_{368}(53,\cdot)\) \(\chi_{368}(61,\cdot)\) \(\chi_{368}(109,\cdot)\) \(\chi_{368}(125,\cdot)\) \(\chi_{368}(149,\cdot)\) \(\chi_{368}(157,\cdot)\) \(\chi_{368}(181,\cdot)\) \(\chi_{368}(189,\cdot)\) \(\chi_{368}(205,\cdot)\) \(\chi_{368}(221,\cdot)\) \(\chi_{368}(237,\cdot)\) \(\chi_{368}(245,\cdot)\) \(\chi_{368}(293,\cdot)\) \(\chi_{368}(309,\cdot)\) \(\chi_{368}(333,\cdot)\) \(\chi_{368}(341,\cdot)\) \(\chi_{368}(365,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{44})\)
Fixed field: 44.0.4141890260646712580912980965306954513336276372715662057543551492310346739946349214617837764608.1

Values on generators

\((47,277,97)\) → \((1,i,e\left(\frac{19}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 368 }(53, a) \) \(-1\)\(1\)\(e\left(\frac{25}{44}\right)\)\(e\left(\frac{5}{44}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{1}{44}\right)\)\(e\left(\frac{37}{44}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{31}{44}\right)\)\(e\left(\frac{21}{44}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 368 }(53,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 368 }(53,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 368 }(53,·),\chi_{ 368 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 368 }(53,·)) \;\) at \(\; a,b = \) e.g. 1,2