Properties

Label 36864.8191
Modulus 3686436864
Conductor 44
Order 22
Real yes
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(36864, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,0,0]))
 
pari: [g,chi] = znchar(Mod(8191,36864))
 

Basic properties

Modulus: 3686436864
Conductor: 44
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ4(3,)\chi_{4}(3,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 36864.g

χ36864(8191,)\chi_{36864}(8191,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(1)\Q(\sqrt{-1})

Values on generators

(8191,20485,4097)(8191,20485,4097)(1,1,1)(-1,1,1)

First values

aa 1-111557711111313171719192323252529293131
χ36864(8191,a) \chi_{ 36864 }(8191, a) 1-111111-11-111111-11-111111-1
sage: chi.jacobi_sum(n)
 
χ36864(8191,a)   \chi_{ 36864 }(8191,a) \; at   a=\;a = e.g. 2