Properties

Label 369.275
Modulus 369369
Conductor 369369
Order 120120
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(369, base_ring=CyclotomicField(120))
 
M = H._module
 
chi = DirichletCharacter(H, M([100,21]))
 
pari: [g,chi] = znchar(Mod(275,369))
 

Basic properties

Modulus: 369369
Conductor: 369369
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 120120
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 369.bf

χ369(11,)\chi_{369}(11,\cdot) χ369(29,)\chi_{369}(29,\cdot) χ369(47,)\chi_{369}(47,\cdot) χ369(56,)\chi_{369}(56,\cdot) χ369(65,)\chi_{369}(65,\cdot) χ369(95,)\chi_{369}(95,\cdot) χ369(101,)\chi_{369}(101,\cdot) χ369(104,)\chi_{369}(104,\cdot) χ369(110,)\chi_{369}(110,\cdot) χ369(140,)\chi_{369}(140,\cdot) χ369(149,)\chi_{369}(149,\cdot) χ369(158,)\chi_{369}(158,\cdot) χ369(176,)\chi_{369}(176,\cdot) χ369(194,)\chi_{369}(194,\cdot) χ369(212,)\chi_{369}(212,\cdot) χ369(218,)\chi_{369}(218,\cdot) χ369(227,)\chi_{369}(227,\cdot) χ369(239,)\chi_{369}(239,\cdot) χ369(257,)\chi_{369}(257,\cdot) χ369(263,)\chi_{369}(263,\cdot) χ369(272,)\chi_{369}(272,\cdot) χ369(275,)\chi_{369}(275,\cdot) χ369(281,)\chi_{369}(281,\cdot) χ369(293,)\chi_{369}(293,\cdot) χ369(299,)\chi_{369}(299,\cdot) χ369(302,)\chi_{369}(302,\cdot) χ369(311,)\chi_{369}(311,\cdot) χ369(317,)\chi_{369}(317,\cdot) χ369(335,)\chi_{369}(335,\cdot) χ369(347,)\chi_{369}(347,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ120)\Q(\zeta_{120})
Fixed field: Number field defined by a degree 120 polynomial (not computed)

Values on generators

(83,334)(83,334)(e(56),e(740))(e\left(\frac{5}{6}\right),e\left(\frac{7}{40}\right))

First values

aa 1-111224455778810101111131314141616
χ369(275,a) \chi_{ 369 }(275, a) 1111e(2360)e\left(\frac{23}{60}\right)e(2330)e\left(\frac{23}{30}\right)e(160)e\left(\frac{1}{60}\right)e(19120)e\left(\frac{19}{120}\right)e(320)e\left(\frac{3}{20}\right)e(25)e\left(\frac{2}{5}\right)e(43120)e\left(\frac{43}{120}\right)e(11120)e\left(\frac{11}{120}\right)e(1324)e\left(\frac{13}{24}\right)e(815)e\left(\frac{8}{15}\right)
sage: chi.jacobi_sum(n)
 
χ369(275,a)   \chi_{ 369 }(275,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ369(275,))   \tau_{ a }( \chi_{ 369 }(275,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ369(275,),χ369(n,))   J(\chi_{ 369 }(275,·),\chi_{ 369 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ369(275,))  K(a,b,\chi_{ 369 }(275,·)) \; at   a,b=\; a,b = e.g. 1,2