from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(369, base_ring=CyclotomicField(120))
M = H._module
chi = DirichletCharacter(H, M([100,21]))
pari: [g,chi] = znchar(Mod(275,369))
χ369(11,⋅)
χ369(29,⋅)
χ369(47,⋅)
χ369(56,⋅)
χ369(65,⋅)
χ369(95,⋅)
χ369(101,⋅)
χ369(104,⋅)
χ369(110,⋅)
χ369(140,⋅)
χ369(149,⋅)
χ369(158,⋅)
χ369(176,⋅)
χ369(194,⋅)
χ369(212,⋅)
χ369(218,⋅)
χ369(227,⋅)
χ369(239,⋅)
χ369(257,⋅)
χ369(263,⋅)
χ369(272,⋅)
χ369(275,⋅)
χ369(281,⋅)
χ369(293,⋅)
χ369(299,⋅)
χ369(302,⋅)
χ369(311,⋅)
χ369(317,⋅)
χ369(335,⋅)
χ369(347,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(83,334) → (e(65),e(407))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 13 | 14 | 16 |
χ369(275,a) |
1 | 1 | e(6023) | e(3023) | e(601) | e(12019) | e(203) | e(52) | e(12043) | e(12011) | e(2413) | e(158) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)