Properties

Label 3700.1317
Modulus $3700$
Conductor $925$
Order $180$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3700, base_ring=CyclotomicField(180))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,117,155]))
 
pari: [g,chi] = znchar(Mod(1317,3700))
 

Basic properties

Modulus: \(3700\)
Conductor: \(925\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(180\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{925}(392,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3700.ej

\(\chi_{3700}(17,\cdot)\) \(\chi_{3700}(113,\cdot)\) \(\chi_{3700}(353,\cdot)\) \(\chi_{3700}(513,\cdot)\) \(\chi_{3700}(533,\cdot)\) \(\chi_{3700}(537,\cdot)\) \(\chi_{3700}(573,\cdot)\) \(\chi_{3700}(577,\cdot)\) \(\chi_{3700}(597,\cdot)\) \(\chi_{3700}(653,\cdot)\) \(\chi_{3700}(853,\cdot)\) \(\chi_{3700}(997,\cdot)\) \(\chi_{3700}(1197,\cdot)\) \(\chi_{3700}(1253,\cdot)\) \(\chi_{3700}(1273,\cdot)\) \(\chi_{3700}(1277,\cdot)\) \(\chi_{3700}(1313,\cdot)\) \(\chi_{3700}(1317,\cdot)\) \(\chi_{3700}(1337,\cdot)\) \(\chi_{3700}(1497,\cdot)\) \(\chi_{3700}(1737,\cdot)\) \(\chi_{3700}(1833,\cdot)\) \(\chi_{3700}(1937,\cdot)\) \(\chi_{3700}(2013,\cdot)\) \(\chi_{3700}(2017,\cdot)\) \(\chi_{3700}(2053,\cdot)\) \(\chi_{3700}(2077,\cdot)\) \(\chi_{3700}(2133,\cdot)\) \(\chi_{3700}(2237,\cdot)\) \(\chi_{3700}(2333,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{180})$
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

\((1851,1777,1001)\) → \((1,e\left(\frac{13}{20}\right),e\left(\frac{31}{36}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 3700 }(1317, a) \) \(1\)\(1\)\(e\left(\frac{169}{180}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{79}{90}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{37}{45}\right)\)\(e\left(\frac{43}{90}\right)\)\(e\left(\frac{151}{180}\right)\)\(e\left(\frac{67}{90}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{49}{60}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3700 }(1317,a) \;\) at \(\;a = \) e.g. 2