Properties

Label 3700.1531
Modulus $3700$
Conductor $3700$
Order $60$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3700, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([30,24,55]))
 
pari: [g,chi] = znchar(Mod(1531,3700))
 

Basic properties

Modulus: \(3700\)
Conductor: \(3700\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3700.dv

\(\chi_{3700}(171,\cdot)\) \(\chi_{3700}(711,\cdot)\) \(\chi_{3700}(791,\cdot)\) \(\chi_{3700}(911,\cdot)\) \(\chi_{3700}(991,\cdot)\) \(\chi_{3700}(1531,\cdot)\) \(\chi_{3700}(1731,\cdot)\) \(\chi_{3700}(2191,\cdot)\) \(\chi_{3700}(2271,\cdot)\) \(\chi_{3700}(2391,\cdot)\) \(\chi_{3700}(2471,\cdot)\) \(\chi_{3700}(2931,\cdot)\) \(\chi_{3700}(3011,\cdot)\) \(\chi_{3700}(3131,\cdot)\) \(\chi_{3700}(3211,\cdot)\) \(\chi_{3700}(3671,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((1851,1777,1001)\) → \((-1,e\left(\frac{2}{5}\right),e\left(\frac{11}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 3700 }(1531, a) \) \(1\)\(1\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{41}{60}\right)\)\(e\left(\frac{37}{60}\right)\)\(e\left(\frac{47}{60}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{2}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3700 }(1531,a) \;\) at \(\;a = \) e.g. 2