Properties

Label 3700.2243
Modulus $3700$
Conductor $740$
Order $12$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3700, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,9,5]))
 
pari: [g,chi] = znchar(Mod(2243,3700))
 

Basic properties

Modulus: \(3700\)
Conductor: \(740\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{740}(23,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3700.bu

\(\chi_{3700}(2043,\cdot)\) \(\chi_{3700}(2243,\cdot)\) \(\chi_{3700}(3307,\cdot)\) \(\chi_{3700}(3507,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.1423340974235683304000000000.2

Values on generators

\((1851,1777,1001)\) → \((-1,-i,e\left(\frac{5}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 3700 }(2243, a) \) \(-1\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(1\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3700 }(2243,a) \;\) at \(\;a = \) e.g. 2