Properties

Label 374.137
Modulus 374374
Conductor 1111
Order 55
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(374, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,0]))
 
pari: [g,chi] = znchar(Mod(137,374))
 

Basic properties

Modulus: 374374
Conductor: 1111
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 55
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ11(5,)\chi_{11}(5,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 374.g

χ374(69,)\chi_{374}(69,\cdot) χ374(103,)\chi_{374}(103,\cdot) χ374(137,)\chi_{374}(137,\cdot) χ374(273,)\chi_{374}(273,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: Q(ζ11)+\Q(\zeta_{11})^+

Values on generators

(35,309)(35,309)(e(25),1)(e\left(\frac{2}{5}\right),1)

First values

aa 1-11133557799131315151919212123232525
χ374(137,a) \chi_{ 374 }(137, a) 1111e(15)e\left(\frac{1}{5}\right)e(35)e\left(\frac{3}{5}\right)e(45)e\left(\frac{4}{5}\right)e(25)e\left(\frac{2}{5}\right)e(25)e\left(\frac{2}{5}\right)e(45)e\left(\frac{4}{5}\right)e(15)e\left(\frac{1}{5}\right)1111e(15)e\left(\frac{1}{5}\right)
sage: chi.jacobi_sum(n)
 
χ374(137,a)   \chi_{ 374 }(137,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ374(137,))   \tau_{ a }( \chi_{ 374 }(137,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ374(137,),χ374(n,))   J(\chi_{ 374 }(137,·),\chi_{ 374 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ374(137,))  K(a,b,\chi_{ 374 }(137,·)) \; at   a,b=\; a,b = e.g. 1,2