Properties

Label 3744.2767
Modulus 37443744
Conductor 936936
Order 1212
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3744, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,6,4,7]))
 
pari: [g,chi] = znchar(Mod(2767,3744))
 

Basic properties

Modulus: 37443744
Conductor: 936936
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ936(427,)\chi_{936}(427,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3744.gx

χ3744(943,)\chi_{3744}(943,\cdot) χ3744(2671,)\chi_{3744}(2671,\cdot) χ3744(2767,)\chi_{3744}(2767,\cdot) χ3744(3343,)\chi_{3744}(3343,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.20223525773472118256959488.1

Values on generators

(703,2341,2081,2017)(703,2341,2081,2017)(1,1,e(13),e(712))(-1,-1,e\left(\frac{1}{3}\right),e\left(\frac{7}{12}\right))

First values

aa 1-111557711111717191923232525292931313535
χ3744(2767,a) \chi_{ 3744 }(2767, a) 1111e(512)e\left(\frac{5}{12}\right)iie(512)e\left(\frac{5}{12}\right)e(16)e\left(\frac{1}{6}\right)e(1112)e\left(\frac{11}{12}\right)11e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)e(512)e\left(\frac{5}{12}\right)e(23)e\left(\frac{2}{3}\right)
sage: chi.jacobi_sum(n)
 
χ3744(2767,a)   \chi_{ 3744 }(2767,a) \; at   a=\;a = e.g. 2