Properties

Label 3744.2767
Modulus $3744$
Conductor $936$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3744, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,6,4,7]))
 
pari: [g,chi] = znchar(Mod(2767,3744))
 

Basic properties

Modulus: \(3744\)
Conductor: \(936\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{936}(427,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3744.gx

\(\chi_{3744}(943,\cdot)\) \(\chi_{3744}(2671,\cdot)\) \(\chi_{3744}(2767,\cdot)\) \(\chi_{3744}(3343,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.20223525773472118256959488.1

Values on generators

\((703,2341,2081,2017)\) → \((-1,-1,e\left(\frac{1}{3}\right),e\left(\frac{7}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 3744 }(2767, a) \) \(1\)\(1\)\(e\left(\frac{5}{12}\right)\)\(i\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{11}{12}\right)\)\(1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3744 }(2767,a) \;\) at \(\;a = \) e.g. 2