Properties

Label 3744.3649
Modulus 37443744
Conductor 117117
Order 33
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3744, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,2,4]))
 
pari: [g,chi] = znchar(Mod(3649,3744))
 

Basic properties

Modulus: 37443744
Conductor: 117117
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 33
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ117(22,)\chi_{117}(22,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3744.r

χ3744(1537,)\chi_{3744}(1537,\cdot) χ3744(3649,)\chi_{3744}(3649,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 3.3.13689.1

Values on generators

(703,2341,2081,2017)(703,2341,2081,2017)(1,1,e(13),e(23))(1,1,e\left(\frac{1}{3}\right),e\left(\frac{2}{3}\right))

First values

aa 1-111557711111717191923232525292931313535
χ3744(3649,a) \chi_{ 3744 }(3649, a) 1111e(23)e\left(\frac{2}{3}\right)e(23)e\left(\frac{2}{3}\right)11e(13)e\left(\frac{1}{3}\right)e(13)e\left(\frac{1}{3}\right)e(13)e\left(\frac{1}{3}\right)e(13)e\left(\frac{1}{3}\right)11e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)
sage: chi.jacobi_sum(n)
 
χ3744(3649,a)   \chi_{ 3744 }(3649,a) \; at   a=\;a = e.g. 2