Properties

Label 376.337
Modulus 376376
Conductor 4747
Order 2323
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(376, base_ring=CyclotomicField(46))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,8]))
 
pari: [g,chi] = znchar(Mod(337,376))
 

Basic properties

Modulus: 376376
Conductor: 4747
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2323
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ47(8,)\chi_{47}(8,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 376.i

χ376(9,)\chi_{376}(9,\cdot) χ376(17,)\chi_{376}(17,\cdot) χ376(25,)\chi_{376}(25,\cdot) χ376(49,)\chi_{376}(49,\cdot) χ376(65,)\chi_{376}(65,\cdot) χ376(81,)\chi_{376}(81,\cdot) χ376(89,)\chi_{376}(89,\cdot) χ376(97,)\chi_{376}(97,\cdot) χ376(121,)\chi_{376}(121,\cdot) χ376(145,)\chi_{376}(145,\cdot) χ376(153,)\chi_{376}(153,\cdot) χ376(169,)\chi_{376}(169,\cdot) χ376(177,)\chi_{376}(177,\cdot) χ376(209,)\chi_{376}(209,\cdot) χ376(225,)\chi_{376}(225,\cdot) χ376(241,)\chi_{376}(241,\cdot) χ376(249,)\chi_{376}(249,\cdot) χ376(289,)\chi_{376}(289,\cdot) χ376(337,)\chi_{376}(337,\cdot) χ376(345,)\chi_{376}(345,\cdot) χ376(353,)\chi_{376}(353,\cdot) χ376(361,)\chi_{376}(361,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ23)\Q(\zeta_{23})
Fixed field: Number field defined by a degree 23 polynomial

Values on generators

(95,189,193)(95,189,193)(1,1,e(423))(1,1,e\left(\frac{4}{23}\right))

First values

aa 1-11133557799111113131515171719192121
χ376(337,a) \chi_{ 376 }(337, a) 1111e(1123)e\left(\frac{11}{23}\right)e(423)e\left(\frac{4}{23}\right)e(1323)e\left(\frac{13}{23}\right)e(2223)e\left(\frac{22}{23}\right)e(523)e\left(\frac{5}{23}\right)e(2123)e\left(\frac{21}{23}\right)e(1523)e\left(\frac{15}{23}\right)e(1823)e\left(\frac{18}{23}\right)e(1923)e\left(\frac{19}{23}\right)e(123)e\left(\frac{1}{23}\right)
sage: chi.jacobi_sum(n)
 
χ376(337,a)   \chi_{ 376 }(337,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ376(337,))   \tau_{ a }( \chi_{ 376 }(337,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ376(337,),χ376(n,))   J(\chi_{ 376 }(337,·),\chi_{ 376 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ376(337,))  K(a,b,\chi_{ 376 }(337,·)) \; at   a,b=\; a,b = e.g. 1,2