from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3762, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([2,0,0]))
pari: [g,chi] = znchar(Mod(1255,3762))
Basic properties
Modulus: | \(3762\) | |
Conductor: | \(9\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(3\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{9}(4,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3762.i
\(\chi_{3762}(1255,\cdot)\) \(\chi_{3762}(2509,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\mathbb{Q}(\zeta_3)\) |
Fixed field: | \(\Q(\zeta_{9})^+\) |
Values on generators
\((2927,343,2377)\) → \((e\left(\frac{1}{3}\right),1,1)\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) | \(37\) |
\( \chi_{ 3762 }(1255, a) \) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(1\) |
sage: chi.jacobi_sum(n)