sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3762, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([15,72,5]))
pari:[g,chi] = znchar(Mod(2225,3762))
χ3762(203,⋅)
χ3762(257,⋅)
χ3762(509,⋅)
χ3762(515,⋅)
χ3762(599,⋅)
χ3762(641,⋅)
χ3762(839,⋅)
χ3762(851,⋅)
χ3762(983,⋅)
χ3762(1181,⋅)
χ3762(1193,⋅)
χ3762(1325,⋅)
χ3762(1523,⋅)
χ3762(1571,⋅)
χ3762(1967,⋅)
χ3762(2225,⋅)
χ3762(2561,⋅)
χ3762(2567,⋅)
χ3762(2693,⋅)
χ3762(2891,⋅)
χ3762(2909,⋅)
χ3762(3281,⋅)
χ3762(3623,⋅)
χ3762(3677,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2927,343,2377) → (e(61),e(54),e(181))
a |
−1 | 1 | 5 | 7 | 13 | 17 | 23 | 25 | 29 | 31 | 35 | 37 |
χ3762(2225,a) |
1 | 1 | e(9083) | e(53) | e(9037) | e(9023) | e(1817) | e(4538) | e(4532) | e(3029) | e(9047) | e(101) |
sage:chi.jacobi_sum(n)