from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3762, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([75,18,5]))
chi.galois_orbit()
[g,chi] = znchar(Mod(59,3762))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(3762\) | |
Conductor: | \(1881\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(90\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 1881.es | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{45})$ |
Fixed field: | Number field defined by a degree 90 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) | \(37\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{3762}(59,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{9}{10}\right)\) |
\(\chi_{3762}(185,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{3762}(317,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{3762}(383,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{3762}(401,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{3}{10}\right)\) |
\(\chi_{3762}(713,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{3762}(1307,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{3762}(1769,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{3762}(1895,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{1}{10}\right)\) |
\(\chi_{3762}(2027,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{1}{10}\right)\) |
\(\chi_{3762}(2093,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{1}{10}\right)\) |
\(\chi_{3762}(2237,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{9}{10}\right)\) |
\(\chi_{3762}(2369,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{9}{10}\right)\) |
\(\chi_{3762}(2423,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{1}{10}\right)\) |
\(\chi_{3762}(2435,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{9}{10}\right)\) |
\(\chi_{3762}(2579,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{3}{10}\right)\) |
\(\chi_{3762}(2711,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{3}{10}\right)\) |
\(\chi_{3762}(2765,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{9}{10}\right)\) |
\(\chi_{3762}(2777,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{3}{10}\right)\) |
\(\chi_{3762}(3017,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{1}{10}\right)\) |
\(\chi_{3762}(3107,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{3}{10}\right)\) |
\(\chi_{3762}(3359,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{9}{10}\right)\) |
\(\chi_{3762}(3479,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{1}{10}\right)\) |
\(\chi_{3762}(3701,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{3}{10}\right)\) |