Properties

Label 3762.et
Modulus $3762$
Conductor $1881$
Order $90$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3762, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([75,18,5]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(59,3762))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3762\)
Conductor: \(1881\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(90\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1881.es
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 90 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(13\) \(17\) \(23\) \(25\) \(29\) \(31\) \(35\) \(37\)
\(\chi_{3762}(59,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{3762}(185,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{3762}(317,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{3762}(383,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{3762}(401,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{3762}(713,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{3762}(1307,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{3762}(1769,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{3762}(1895,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{3762}(2027,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{3762}(2093,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{3762}(2237,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{3762}(2369,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{3762}(2423,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{3762}(2435,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{3762}(2579,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{3762}(2711,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{3762}(2765,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{3762}(2777,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{3762}(3017,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{3762}(3107,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{3762}(3359,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{3762}(3479,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{3762}(3701,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{3}{10}\right)\)