Properties

Label 3762.q
Modulus 37623762
Conductor 18811881
Order 66
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3762, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,3,2]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(2705,3762))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 37623762
Conductor: 18811881
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1881.s
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.6.3414159071433.1

Characters in Galois orbit

Character 1-1 11 55 77 1313 1717 2323 2525 2929 3131 3535 3737
χ3762(2705,)\chi_{3762}(2705,\cdot) 11 11 1-1 e(56)e\left(\frac{5}{6}\right) e(56)e\left(\frac{5}{6}\right) e(13)e\left(\frac{1}{3}\right) e(56)e\left(\frac{5}{6}\right) 11 11 e(23)e\left(\frac{2}{3}\right) e(13)e\left(\frac{1}{3}\right) 11
χ3762(3431,)\chi_{3762}(3431,\cdot) 11 11 1-1 e(16)e\left(\frac{1}{6}\right) e(16)e\left(\frac{1}{6}\right) e(23)e\left(\frac{2}{3}\right) e(16)e\left(\frac{1}{6}\right) 11 11 e(13)e\left(\frac{1}{3}\right) e(23)e\left(\frac{2}{3}\right) 11