Properties

Label 377.53
Modulus 377377
Conductor 2929
Order 77
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(377, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,4]))
 
pari: [g,chi] = znchar(Mod(53,377))
 

Basic properties

Modulus: 377377
Conductor: 2929
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 77
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ29(24,)\chi_{29}(24,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 377.o

χ377(53,)\chi_{377}(53,\cdot) χ377(170,)\chi_{377}(170,\cdot) χ377(248,)\chi_{377}(248,\cdot) χ377(313,)\chi_{377}(313,\cdot) χ377(326,)\chi_{377}(326,\cdot) χ377(339,)\chi_{377}(339,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ7)\Q(\zeta_{7})
Fixed field: 7.7.594823321.1

Values on generators

(262,118)(262,118)(1,e(27))(1,e\left(\frac{2}{7}\right))

First values

aa 1-111223344556677889910101111
χ377(53,a) \chi_{ 377 }(53, a) 1111e(27)e\left(\frac{2}{7}\right)e(37)e\left(\frac{3}{7}\right)e(47)e\left(\frac{4}{7}\right)e(27)e\left(\frac{2}{7}\right)e(57)e\left(\frac{5}{7}\right)e(37)e\left(\frac{3}{7}\right)e(67)e\left(\frac{6}{7}\right)e(67)e\left(\frac{6}{7}\right)e(47)e\left(\frac{4}{7}\right)e(17)e\left(\frac{1}{7}\right)
sage: chi.jacobi_sum(n)
 
χ377(53,a)   \chi_{ 377 }(53,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ377(53,))   \tau_{ a }( \chi_{ 377 }(53,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ377(53,),χ377(n,))   J(\chi_{ 377 }(53,·),\chi_{ 377 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ377(53,))  K(a,b,\chi_{ 377 }(53,·)) \; at   a,b=\; a,b = e.g. 1,2