from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(378, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([4,15]))
pari: [g,chi] = znchar(Mod(313,378))
Basic properties
Modulus: | \(378\) | |
Conductor: | \(189\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(18\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{189}(124,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 378.be
\(\chi_{378}(31,\cdot)\) \(\chi_{378}(61,\cdot)\) \(\chi_{378}(157,\cdot)\) \(\chi_{378}(187,\cdot)\) \(\chi_{378}(283,\cdot)\) \(\chi_{378}(313,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{9})\) |
Fixed field: | Number field defined by a degree 18 polynomial |
Values on generators
\((29,325)\) → \((e\left(\frac{2}{9}\right),e\left(\frac{5}{6}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 378 }(313, a) \) | \(-1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(1\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)