Properties

Label 3800.1531
Modulus 38003800
Conductor 38003800
Order 3030
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,15,12,20]))
 
pari: [g,chi] = znchar(Mod(1531,3800))
 

Basic properties

Modulus: 38003800
Conductor: 38003800
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3030
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3800.dt

χ3800(11,)\chi_{3800}(11,\cdot) χ3800(691,)\chi_{3800}(691,\cdot) χ3800(771,)\chi_{3800}(771,\cdot) χ3800(1531,)\chi_{3800}(1531,\cdot) χ3800(2211,)\chi_{3800}(2211,\cdot) χ3800(2291,)\chi_{3800}(2291,\cdot) χ3800(2971,)\chi_{3800}(2971,\cdot) χ3800(3731,)\chi_{3800}(3731,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

(951,1901,1977,401)(951,1901,1977,401)(1,1,e(25),e(23))(-1,-1,e\left(\frac{2}{5}\right),e\left(\frac{2}{3}\right))

First values

aa 1-1113377991111131317172121232327272929
χ3800(1531,a) \chi_{ 3800 }(1531, a) 1-111e(715)e\left(\frac{7}{15}\right)1-1e(1415)e\left(\frac{14}{15}\right)e(25)e\left(\frac{2}{5}\right)e(1330)e\left(\frac{13}{30}\right)e(1315)e\left(\frac{13}{15}\right)e(2930)e\left(\frac{29}{30}\right)e(730)e\left(\frac{7}{30}\right)e(25)e\left(\frac{2}{5}\right)e(1930)e\left(\frac{19}{30}\right)
sage: chi.jacobi_sum(n)
 
χ3800(1531,a)   \chi_{ 3800 }(1531,a) \; at   a=\;a = e.g. 2