Properties

Label 3800.1899
Modulus 38003800
Conductor 760760
Order 22
Real yes
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,1,1,1]))
 
pari: [g,chi] = znchar(Mod(1899,3800))
 

Basic properties

Modulus: 38003800
Conductor: 760760
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ760(379,)\chi_{760}(379,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3800.p

χ3800(1899,)\chi_{3800}(1899,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(190)\Q(\sqrt{190})

Values on generators

(951,1901,1977,401)(951,1901,1977,401)(1,1,1,1)(-1,-1,-1,-1)

First values

aa 1-1113377991111131317172121232327272929
χ3800(1899,a) \chi_{ 3800 }(1899, a) 1111111111111-11-111111111
sage: chi.jacobi_sum(n)
 
χ3800(1899,a)   \chi_{ 3800 }(1899,a) \; at   a=\;a = e.g. 2