Properties

Label 3800.2001
Modulus 38003800
Conductor 1919
Order 99
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,0,14]))
 
pari: [g,chi] = znchar(Mod(2001,3800))
 

Basic properties

Modulus: 38003800
Conductor: 1919
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 99
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ19(6,)\chi_{19}(6,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3800.bp

χ3800(1201,)\chi_{3800}(1201,\cdot) χ3800(1601,)\chi_{3800}(1601,\cdot) χ3800(2001,)\chi_{3800}(2001,\cdot) χ3800(2201,)\chi_{3800}(2201,\cdot) χ3800(2601,)\chi_{3800}(2601,\cdot) χ3800(3201,)\chi_{3800}(3201,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Q(ζ19)+\Q(\zeta_{19})^+

Values on generators

(951,1901,1977,401)(951,1901,1977,401)(1,1,1,e(79))(1,1,1,e\left(\frac{7}{9}\right))

First values

aa 1-1113377991111131317172121232327272929
χ3800(2001,a) \chi_{ 3800 }(2001, a) 1111e(19)e\left(\frac{1}{9}\right)e(23)e\left(\frac{2}{3}\right)e(29)e\left(\frac{2}{9}\right)e(13)e\left(\frac{1}{3}\right)e(89)e\left(\frac{8}{9}\right)e(79)e\left(\frac{7}{9}\right)e(79)e\left(\frac{7}{9}\right)e(59)e\left(\frac{5}{9}\right)e(13)e\left(\frac{1}{3}\right)e(29)e\left(\frac{2}{9}\right)
sage: chi.jacobi_sum(n)
 
χ3800(2001,a)   \chi_{ 3800 }(2001,a) \; at   a=\;a = e.g. 2