from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3800, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([45,0,72,5]))
pari: [g,chi] = znchar(Mod(2111,3800))
χ3800(71,⋅)
χ3800(231,⋅)
χ3800(431,⋅)
χ3800(471,⋅)
χ3800(591,⋅)
χ3800(831,⋅)
χ3800(991,⋅)
χ3800(1191,⋅)
χ3800(1231,⋅)
χ3800(1511,⋅)
χ3800(1591,⋅)
χ3800(1991,⋅)
χ3800(2111,⋅)
χ3800(2271,⋅)
χ3800(2511,⋅)
χ3800(2711,⋅)
χ3800(2871,⋅)
χ3800(3031,⋅)
χ3800(3111,⋅)
χ3800(3271,⋅)
χ3800(3471,⋅)
χ3800(3511,⋅)
χ3800(3631,⋅)
χ3800(3791,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(951,1901,1977,401) → (−1,1,e(54),e(181))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 21 | 23 | 27 | 29 |
χ3800(2111,a) |
1 | 1 | e(4537) | e(65) | e(4529) | e(3029) | e(9043) | e(4543) | e(9059) | e(9037) | e(157) | e(9049) |