Properties

Label 3800.2243
Modulus 38003800
Conductor 4040
Order 44
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,2,3,0]))
 
pari: [g,chi] = znchar(Mod(2243,3800))
 

Basic properties

Modulus: 38003800
Conductor: 4040
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ40(3,)\chi_{40}(3,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3800.w

χ3800(2243,)\chi_{3800}(2243,\cdot) χ3800(3307,)\chi_{3800}(3307,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.4.8000.1

Values on generators

(951,1901,1977,401)(951,1901,1977,401)(1,1,i,1)(-1,-1,-i,1)

First values

aa 1-1113377991111131317172121232327272929
χ3800(2243,a) \chi_{ 3800 }(2243, a) 1111iiii1-111i-ii-i1-1i-ii-i11
sage: chi.jacobi_sum(n)
 
χ3800(2243,a)   \chi_{ 3800 }(2243,a) \; at   a=\;a = e.g. 2