from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3800, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,18,9,34]))
pari: [g,chi] = znchar(Mod(3107,3800))
Basic properties
Modulus: | \(3800\) | |
Conductor: | \(760\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{760}(67,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3800.eb
\(\chi_{3800}(243,\cdot)\) \(\chi_{3800}(307,\cdot)\) \(\chi_{3800}(507,\cdot)\) \(\chi_{3800}(907,\cdot)\) \(\chi_{3800}(1307,\cdot)\) \(\chi_{3800}(2043,\cdot)\) \(\chi_{3800}(2643,\cdot)\) \(\chi_{3800}(3043,\cdot)\) \(\chi_{3800}(3107,\cdot)\) \(\chi_{3800}(3243,\cdot)\) \(\chi_{3800}(3643,\cdot)\) \(\chi_{3800}(3707,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | 36.0.4031181156993454136731178943694064571490658196389888000000000000000000000000000.1 |
Values on generators
\((951,1901,1977,401)\) → \((-1,-1,i,e\left(\frac{17}{18}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 3800 }(3107, a) \) | \(-1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) |
sage: chi.jacobi_sum(n)