Properties

Label 3800.3193
Modulus $3800$
Conductor $5$
Order $4$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,3,0]))
 
pari: [g,chi] = znchar(Mod(3193,3800))
 

Basic properties

Modulus: \(3800\)
Conductor: \(5\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{5}(3,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3800.x

\(\chi_{3800}(457,\cdot)\) \(\chi_{3800}(3193,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: \(\Q(\zeta_{5})\)

Values on generators

\((951,1901,1977,401)\) → \((1,1,-i,1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 3800 }(3193, a) \) \(-1\)\(1\)\(i\)\(-i\)\(-1\)\(1\)\(i\)\(-i\)\(1\)\(i\)\(-i\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3800 }(3193,a) \;\) at \(\;a = \) e.g. 2