Properties

Label 3800.3231
Modulus $3800$
Conductor $100$
Order $10$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,0,4,0]))
 
pari: [g,chi] = znchar(Mod(3231,3800))
 

Basic properties

Modulus: \(3800\)
Conductor: \(100\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{100}(31,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3800.bz

\(\chi_{3800}(191,\cdot)\) \(\chi_{3800}(1711,\cdot)\) \(\chi_{3800}(2471,\cdot)\) \(\chi_{3800}(3231,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.0.156250000000000.1

Values on generators

\((951,1901,1977,401)\) → \((-1,1,e\left(\frac{2}{5}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 3800 }(3231, a) \) \(-1\)\(1\)\(e\left(\frac{3}{10}\right)\)\(-1\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{4}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3800 }(3231,a) \;\) at \(\;a = \) e.g. 2