from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3800, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([0,0,81,20]))
pari: [g,chi] = znchar(Mod(3569,3800))
χ3800(9,⋅)
χ3800(169,⋅)
χ3800(289,⋅)
χ3800(329,⋅)
χ3800(529,⋅)
χ3800(689,⋅)
χ3800(769,⋅)
χ3800(929,⋅)
χ3800(1089,⋅)
χ3800(1289,⋅)
χ3800(1529,⋅)
χ3800(1689,⋅)
χ3800(1809,⋅)
χ3800(2209,⋅)
χ3800(2289,⋅)
χ3800(2569,⋅)
χ3800(2609,⋅)
χ3800(2809,⋅)
χ3800(2969,⋅)
χ3800(3209,⋅)
χ3800(3329,⋅)
χ3800(3369,⋅)
χ3800(3569,⋅)
χ3800(3729,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(951,1901,1977,401) → (1,1,e(109),e(92))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 21 | 23 | 27 | 29 |
χ3800(3569,a) |
1 | 1 | e(9017) | e(65) | e(4517) | e(151) | e(9019) | e(9083) | e(451) | e(9031) | e(3017) | e(4526) |