Properties

Label 3800.3571
Modulus 38003800
Conductor 38003800
Order 1010
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,5,6,5]))
 
pari: [g,chi] = znchar(Mod(3571,3800))
 

Basic properties

Modulus: 38003800
Conductor: 38003800
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3800.bx

χ3800(531,)\chi_{3800}(531,\cdot) χ3800(1291,)\chi_{3800}(1291,\cdot) χ3800(2811,)\chi_{3800}(2811,\cdot) χ3800(3571,)\chi_{3800}(3571,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: 10.10.12380495000000000000000.1

Values on generators

(951,1901,1977,401)(951,1901,1977,401)(1,1,e(35),1)(-1,-1,e\left(\frac{3}{5}\right),-1)

First values

aa 1-1113377991111131317172121232327272929
χ3800(3571,a) \chi_{ 3800 }(3571, a) 1111e(710)e\left(\frac{7}{10}\right)1-1e(25)e\left(\frac{2}{5}\right)e(35)e\left(\frac{3}{5}\right)e(25)e\left(\frac{2}{5}\right)e(45)e\left(\frac{4}{5}\right)e(15)e\left(\frac{1}{5}\right)e(110)e\left(\frac{1}{10}\right)e(110)e\left(\frac{1}{10}\right)e(15)e\left(\frac{1}{5}\right)
sage: chi.jacobi_sum(n)
 
χ3800(3571,a)   \chi_{ 3800 }(3571,a) \; at   a=\;a = e.g. 2