sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3800, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([5,5,6,5]))
pari:[g,chi] = znchar(Mod(3571,3800))
Modulus: | 3800 | |
Conductor: | 3800 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 10 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ3800(531,⋅)
χ3800(1291,⋅)
χ3800(2811,⋅)
χ3800(3571,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(951,1901,1977,401) → (−1,−1,e(53),−1)
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 21 | 23 | 27 | 29 |
χ3800(3571,a) |
1 | 1 | e(107) | −1 | e(52) | e(53) | e(52) | e(54) | e(51) | e(101) | e(101) | e(51) |
sage:chi.jacobi_sum(n)