Properties

Label 3800.3571
Modulus $3800$
Conductor $3800$
Order $10$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,5,6,5]))
 
pari: [g,chi] = znchar(Mod(3571,3800))
 

Basic properties

Modulus: \(3800\)
Conductor: \(3800\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3800.bx

\(\chi_{3800}(531,\cdot)\) \(\chi_{3800}(1291,\cdot)\) \(\chi_{3800}(2811,\cdot)\) \(\chi_{3800}(3571,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.12380495000000000000000.1

Values on generators

\((951,1901,1977,401)\) → \((-1,-1,e\left(\frac{3}{5}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 3800 }(3571, a) \) \(1\)\(1\)\(e\left(\frac{7}{10}\right)\)\(-1\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{1}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3800 }(3571,a) \;\) at \(\;a = \) e.g. 2