sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3800, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([0,45,9,5]))
pari:[g,chi] = znchar(Mod(629,3800))
Modulus: | 3800 | |
Conductor: | 3800 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 90 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ3800(29,⋅)
χ3800(109,⋅)
χ3800(269,⋅)
χ3800(469,⋅)
χ3800(509,⋅)
χ3800(629,⋅)
χ3800(789,⋅)
χ3800(869,⋅)
χ3800(1029,⋅)
χ3800(1229,⋅)
χ3800(1269,⋅)
χ3800(1389,⋅)
χ3800(1629,⋅)
χ3800(1789,⋅)
χ3800(1989,⋅)
χ3800(2029,⋅)
χ3800(2309,⋅)
χ3800(2389,⋅)
χ3800(2789,⋅)
χ3800(2909,⋅)
χ3800(3069,⋅)
χ3800(3309,⋅)
χ3800(3509,⋅)
χ3800(3669,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(951,1901,1977,401) → (1,−1,e(101),e(181))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 21 | 23 | 27 | 29 |
χ3800(629,a) |
−1 | 1 | e(9083) | e(65) | e(4538) | e(3023) | e(9061) | e(9077) | e(4534) | e(9019) | e(3023) | e(4529) |
sage:chi.jacobi_sum(n)