Properties

Label 3800.77
Modulus 38003800
Conductor 200200
Order 2020
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,10,1,0]))
 
pari: [g,chi] = znchar(Mod(77,3800))
 

Basic properties

Modulus: 38003800
Conductor: 200200
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ200(77,)\chi_{200}(77,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3800.dk

χ3800(77,)\chi_{3800}(77,\cdot) χ3800(533,)\chi_{3800}(533,\cdot) χ3800(837,)\chi_{3800}(837,\cdot) χ3800(1597,)\chi_{3800}(1597,\cdot) χ3800(2053,)\chi_{3800}(2053,\cdot) χ3800(2813,)\chi_{3800}(2813,\cdot) χ3800(3117,)\chi_{3800}(3117,\cdot) χ3800(3573,)\chi_{3800}(3573,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: 20.0.3125000000000000000000000000000000.1

Values on generators

(951,1901,1977,401)(951,1901,1977,401)(1,1,e(120),1)(1,-1,e\left(\frac{1}{20}\right),1)

First values

aa 1-1113377991111131317172121232327272929
χ3800(77,a) \chi_{ 3800 }(77, a) 1-111e(1720)e\left(\frac{17}{20}\right)iie(710)e\left(\frac{7}{10}\right)e(310)e\left(\frac{3}{10}\right)e(920)e\left(\frac{9}{20}\right)e(1320)e\left(\frac{13}{20}\right)e(110)e\left(\frac{1}{10}\right)e(1120)e\left(\frac{11}{20}\right)e(1120)e\left(\frac{11}{20}\right)e(35)e\left(\frac{3}{5}\right)
sage: chi.jacobi_sum(n)
 
χ3800(77,a)   \chi_{ 3800 }(77,a) \; at   a=\;a = e.g. 2