Properties

Label 3822.2449
Modulus $3822$
Conductor $91$
Order $4$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3822, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,2,3]))
 
pari: [g,chi] = znchar(Mod(2449,3822))
 

Basic properties

Modulus: \(3822\)
Conductor: \(91\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{91}(83,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3822.o

\(\chi_{3822}(2449,\cdot)\) \(\chi_{3822}(3037,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.107653.1

Values on generators

\((2549,3433,1471)\) → \((1,-1,-i)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 3822 }(2449, a) \) \(1\)\(1\)\(i\)\(i\)\(1\)\(i\)\(-1\)\(-1\)\(1\)\(i\)\(i\)\(i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3822 }(2449,a) \;\) at \(\;a = \) e.g. 2